Discussion
atoms do exist
Big mess here.
- Philosophical atoms
- Leucippus
- Democritus
- Epicurus
- Nothing comes into being out of what is non-existant. (Matter cannot be created.)
- Lucretius (Epicurus?)
- Nature resolves everything into its component atoms and never reduces anything to nothing. (Matter cannot be destroyed.)
- Since the atoms are moving freely through the void [empty space] they must all be kept in motion by their weight [mass].
- Mechanical atoms
- Isaac Newton
- Have not the small Particles of Bodies [atoms] certain Powers, Virtues or Forces, by which they act at a distance, not only upon the Rays of Light for reflecting, refracting and inflecting them, but also upon one another producing a great part of the Phænomena of Nature [chemistry]?
- Chemical atoms
- John Dalton
- An inquiry into the relative weights of the ultimate particles of bodies is a subject, as far as I know, entirely new; I have lately been prosecuting this inquiry with remarkable success.
- Stanislao Cannizzaro
- Compare… the various quantities of the same element contained in the molecule of the free substance and in those of all its different compounds and you will not be able to escape the following law: The different quantities of the same element contained in different molecules are all whole multiples of one and the same quantity, which always being entire, has the right to be called an atom
- Nuclear (planetary) atoms
- Quantum atoms
What belongs in this section? Just chemistry? Or chemistry and physics?
- chemistry
- Democritus
- philosophy, not science
- everything has to have an ultimate thing?
- chemical elements
- Earth, Water, Air, Fire, quintessence (aether)
- yellow bile (fire), black bile (earth), blood (air), and phlegm (water)
- Fire, Earth, Metal, Water, Wood
- Boyle defines an element as a substance that cannot be broken down into a simpler substance by a chemical reaction
- Antoine Lavoisier, the first chemistry textbook to contain a list of elements, Traité Élémentaire de Chimie (Elementary Treatise of Chemistry), 1789
- laws of definite and multiple proportions, Dalton
- Gay-Lussac pointed out that the simple regularities of his law were realized only for gases, for which matter behaves in the simplest and most universal manner. It is worth noting that the English chemist John Dalton's laws of definite and multiple proportions in chemical composition (formulated in the same period) referred to combining weights and not to volumes. This basic difference in approach led each scientist to be skeptical of the other's results, and they did not reach mutual understanding. (The Italian physicist Amedeo Avogadro showed how the results of Dalton and Gay-Lussac could be reconciled.) or so says the Encyclopedia Britannica
- laws of definite and multiple proportions, Gay-Lussac
- By 1808, JosephGay-Lussac (1778–1850) established that when different gases combine chemically, the volumes of the combining gases are in the ratio of simple integers.
- Gay-Lussac to the conclusion [1808] that "gases combine in very simple proportions" and that "the apparent contraction in volume which they experience on combination has also a simple relation to the volume of the gases, or at least to one of them." This relationship is known as the law of combining volumes and as Gay-Lussac's law.
- Avogadro's hypothesis
- AmedeoAvogadro (1776–1856) took this observation to imply that the number of molecules in a given volume of gas at a given temperature is the same for all gases. As he was unable to prove it, this statement became known as Avogadro's hypothesis and the number he sought to calculate as the Avogadro constant (the preferred way of saying it) or Avogadro's number.
- size of a molecule
- Benjamin Franklin
- Someone else
- To determine this number, it is first necessary to determine the characteristic size and mass of a molecule. JosefLoschmidt (1821–1895) devised a method to determine the diameter of a gas molecule from the density of the liquefied gas and and the mean free path of a molecule in the gaseous phase. As a result, the Avogadro constant is sometimes called the Loschmidt constant in German speaking countries.
- Philip Morrison, Ring of Truth
- periodic table: Mendeleev predicted three new elements:
- "Ekaboron", atomic mass = 44;
- "Ekaaluminum", atomic mass = 68, density = 5.9 g/cm3; and
- "Ekasilicon", atomic mass = 72, density = 5.5 g/cm3.
- physics
- gas laws can be derived from kinetic molecular theory
- Brownian motion
- Robert Brown, 1872
- Jean Perrin, 1908
- Albert Einstein, 1906
- Smoluchowski, 1906?
- x-ray diffraction, Von Laue
- electron diffraction, Davisson-Germer, Thomson-Reid
- Atomic Force Microscope (AFM): Gerd Binnig, Christoph Gerber, and Calvin Quate; IBM Zürich Research Laboratory; mid-1980s
We need to have the talk.
ἄ τομος, a tomos, uncuttable
Democritus, Dalton, Mendeleev, Avogadro, Priestly?, Boltzmann, Laue, STM/AFM images
The idea of atoms is very old. (Well, maybe just old.) The evidence for atoms is not that old, however.
Water will not move from one spot to another unless to seek a lower level, and in the natural course of its current it will never be able to return to an elevation equal to that of the spot where it first issued forth from the mountains and came into the light. That part of the sea which by an error of imagination you state to have been so high as to have flowed over the summits of the high mountains for so many centuries, would be consumed and poured out in the water that has issued from these same mountains. You can well imagine that during all the time that the Tigris and the Euphrates have flowed from the summits of the Armenian mountains, one may suppose the whole of the water of the ocean to have passed a great many times through their mouths. Or do you not believe that the Nile has discharged more water into the sea than is at present contained in all the watery element? Surely this is the case! If then this water had fallen away from this body of the Earth, the whole mechanism would long since have been without water. So, therefore, one may conclude that the water passes from the rivers to the sea, and from the sea to the rivers, ever making the self-same round, and that all the sea and the rivers have passed through the mouth of the Nile an infinite number of times.
Leonardo da Vinci, ca. 1500s
Everything goes somewhere. Nothing disappears.
Beakman, ca. 1994
A physicist is the atom's way of knowing about atoms.
George Wald, 1958
Like Avogadro's name, this quote is too long.
M. Gay-Lussac has shown in an interesting Memoir that gases always unite in a very simple proportion by volume, and that when the result of the union is a gas, its volume also is very simply related to those of its components. But the quantitative proportions of substances in compounds seem only to depend on the relative number of molecules which combine, and on the number of composite molecules which result. It must then be admitted that very simple relations also exist between the volumes of gaseous substances and the numbers of simple or compound molecules which form them. The first hypothesis to present itself in this connection, and apparently even the only admissible one, is the supposition that the number of integral molecules in any gases is always the same for equal volumes, or always proportional to the volumes. Indeed, if we were to suppose that the number of molecules contained in a given volume were different for different gases, it would scarcely be possible to conceive that the law regulating the distance of molecules could give in all cases relations so simple as those which the facts just detailed compel us to acknowledge between the volume and the number of molecules. On the other hand, it is very well conceivable that the molecules of gases being at such a distance that their mutual attraction cannot be exercised, their varying attraction for caloric may be limited to condensing a greater or smaller quantity around them, without the atmosphere formed by this fluid having any greater extent in the one case than in the other, and, consequently, without the distance between the molecules varying; or, in other words, without the number of molecules contained in a given volume being different. Dalton, it is true, has proposed a hypothesis directly opposed to this, namely, that the quantity of caloric is always the same for the molecules of all bodies whatsoever in the gaseous state, and that the greater or less attraction for caloric only results in producing a greater or less condensation of this quantity around the molecules, and thus varying the distance between the molecules themselves. But in our present ignorance of the manner in which this attraction for the molecules for caloric is exerted, there is nothing to decide us a priori in favour of the one of these hypotheses rather than the other; and we should rather be inclined to adopt a neutral hypothesis, which would make the distance between the molecules and the quantities of caloric vary according to unknown laws, were it not that the hypothesis we have just proposed is based on that simplicity of relation between the volumes of gases on combination, which would appear to be otherwise inexplicable.
Setting out from this hypothesis, it is apparent that we have the means of determining very easily the relative masses of the molecules of substances obtainable in the gaseous state, and the relative number of these molecules in compounds; for the ratios of the masses of the molecules are then the same as those of the densities of the different gases at equal temperature and pressure, and the relative number of molecules in a compound is given at once by the ratio of the volumes of the gases that form it. For example, since the numbers 1.10359 and 0.07321 express the densities of the two gases oxygen and hydrogen compared to that of atmospheric air as unity, and the ratio of the two numbers consequently represents the ratio between the masses of equal volumes of these two gases, it will also represent on our hypothesis the ratio of the masses of their molecules. Thus the mass of the molecule of oxygen will be about 15 times that of the molecule of hydrogen, or more exactly, as 15.074 to 1. In the same way the mass of the molecule of nitrogen will be to that of hydrogen as 0.96913 to 0.07321, that is, as 13, or more exactly 13.238, to 1. On the other hand, since we know that the ratio of the volumes of hydrogen and oxygen in the formation of water is 2 to 1, it follows that water results from the union of each molecule of oxygen with two molecules of hydrogen. Similarly, according to the proportions by volume established by M. Gay-Lussac for the elements of ammonia, nitrous oxide, nitrous gas, and nitric acid, ammonia will result from the union of one molecule of nitrogen with three of hydrogen, nitrous oxide from one molecule of oxygen with two of nitrogen, nitrous gas from one molecule of nitrogen with one of oxygen, and nitric acid from one of nitrogen with two of oxygen.
Lorenzo Romano Amadeo Carlo Avogadro, 1811
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
1 |
|
2 |
|
|
|
|
|
|
|
|
|
|
13 |
14 |
15 |
16 |
17 |
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Symbols of the elements
A–E |
F–M |
N–R |
S–Z |
Ac | Actinium | F | Fluorine | N | Nitrogen | S | Sulfur |
Ag | Silver | Fe | Iron | Na | Sodium | Sb | Antimony |
Al | Aluminum | Fm | Fermium | Nb | Niobium | Sc | Scandium |
Am | Americium | Fr | Francium | Nd | Neodymium | Se | Selenium |
Ar | Argon | Fl | Flerovium | Ne | Neon | Sg | Seaborgium |
As | Arsenic | Fy | Feynmanium | Nh | Nihonium | Si | Silicon |
At | Astatine | Ga | Gallium | Ni | Nickel | Sm | Samarium |
Au | Gold | Gd | Gadolinium | No | Nobelium | Sn | Tin |
B | Boron | Ge | Germanium | Np | Neptunium | Sr | Strontium |
Ba | Barium | H | Hydrogen | O | Oxygen | Ta | Tantalum |
Be | Beryllium | He | Helium | Og | Oganesson | Tb | Terbium |
Bh | Bohrium | Hf | Hafnium | Os | Osmium | Tc | Technetium |
Bi | Bismuth | Hg | Mercury | P | Phosphorus | Te | Tellurium |
Bk | Berkelium | Ho | Holmium | Pa | Protactinium | Th | Thorium |
Br | Bromine | Hs | Hassium | Pb | Lead | Ti | Titanium |
C | Carbon | I | Iodine | Pd | Palladium | Tl | Thallium |
Ca | Calcium | In | Indium | Pm | Promethium | Tm | Thulium |
Cd | Cadmium | Ir | Iridium | Po | Polonium | Ts | Tennessine |
Ce | Cerium | K | Potassium | Pr | Praseodymium | U | Uranium |
Cf | Californium | Kr | Krypton | Pt | Platinum | V | Vanadium |
Cl | Chlorine | La | Lanthanum | Pu | Plutonium | W | Tungsten |
Cm | Curium | Li | Lithium | Ra | Radium | Xe | Xenon |
Cn | Copernicium | Lr | Lawrencium | Rb | Rubidium | Y | Yttrium |
Co | Cobalt | Lu | Lutetium | Re | Rhenium | Yb | Ytterbium |
Cr | Chromium | Lv | Livermorium | Rf | Rutherfordium | Zn | Zinc |
Cs | Cesium | Mc | Moscovium | Rg | Roentgenium | | |
Cu | Copper | Md | Mendelevium | Rh | Rhodium | | |
Ds | Darmstadtium | Mg | Magnesium | Rn | Radon | | |
Db | Dubnium | Mn | Manganese | Ru | Ruthenium | | |
Dy | Dysprosium | Mo | Molybdenum | | | | |
Er | Erbium | Mt | Meitnerium | | | | |
Es | Einsteinium | | | | | | |
Eu | Europium | | | | | | |
Symbols of the elements
A–G |
H–P |
R–Z |
Ac | Actinium | H | Hydrogen | Ra | Radium |
Ag | Silver | He | Helium | Rb | Rubidium |
Al | Aluminum | Hf | Hafnium | Re | Rhenium |
Am | Americium | Hg | Mercury | Rf | Rutherfordium |
Ar | Argon | Ho | Holmium | Rg | Roentgenium |
As | Arsenic | Hs | Hassium | Rh | Rhodium |
At | Astatine | I | Iodine | Rn | Radon |
Au | Gold | In | Indium | Ru | Ruthenium |
B | Boron | Ir | Iridium | S | Sulfur |
Ba | Barium | K | Potassium | Sb | Antimony |
Be | Beryllium | Kr | Krypton | Sc | Scandium |
Bh | Bohrium | La | Lanthanum | Se | Selenium |
Bi | Bismuth | Li | Lithium | Sg | Seaborgium |
Bk | Berkelium | Lr | Lawrencium | Si | Silicon |
Br | Bromine | Lu | Lutetium | Sm | Samarium |
C | Carbon | Lv | Livermorium | Sn | Tin |
Ca | Calcium | Mc | Moscovium | Sr | Strontium |
Cd | Cadmium | Md | Mendelevium | Ta | Tantalum |
Ce | Cerium | Mg | Magnesium | Tb | Terbium |
Cf | Californium | Mn | Manganese | Tc | Technetium |
Cl | Chlorine | Mo | Molybdenum | Te | Tellurium |
Cm | Curium | Mt | Meitnerium | Th | Thorium |
Cn | Copernicium | N | Nitrogen | Ti | Titanium |
Co | Cobalt | Na | Sodium | Tl | Thallium |
Cr | Chromium | Nb | Niobium | Tm | Thulium |
Cs | Cesium | Nd | Neodymium | Ts | Tennessine |
Cu | Copper | Ne | Neon | U | Uranium |
Ds | Darmstadtium | Nh | Nihonium | V | Vanadium |
Db | Dubnium | Ni | Nickel | W | Tungsten |
Dy | Dysprosium | No | Nobelium | Xe | Xenon |
Er | Erbium | Np | Neptunium | Y | Yttrium |
Es | Einsteinium | O | Oxygen | Yb | Ytterbium |
Eu | Europium | Og | Oganesson | Zn | Zinc |
F | Fluorine | Os | Osmium | | |
Fe | Iron | P | Phosphorus | | |
Fm | Fermium | Pa | Protactinium | | |
Fr | Francium | Pb | Lead | | |
Fl | Flerovium | Pd | Palladium | | |
Fy | Feynmanium | Pm | Promethium | | |
Ga | Gallium | Po | Polonium | | |
Gd | Gadolinium | Pr | Praseodymium | | |
Ge | Germanium | Pt | Platinum | | |
| | Pu | Plutonium | | |
Symbols of the elements
A–L |
M–Z |
Ac | Actinium | Mc | Moscovium |
Ag | Silver | Md | Mendelevium |
Al | Aluminum | Mg | Magnesium |
Am | Americium | Mn | Manganese |
Ar | Argon | Mo | Molybdenum |
As | Arsenic | Mt | Meitnerium |
At | Astatine | N | Nitrogen |
Au | Gold | Na | Sodium |
B | Boron | Nb | Niobium |
Ba | Barium | Nd | Neodymium |
Be | Beryllium | Ne | Neon |
Bh | Bohrium | Nh | Nihonium |
Bi | Bismuth | Ni | Nickel |
Bk | Berkelium | No | Nobelium |
Br | Bromine | Np | Neptunium |
C | Carbon | O | Oxygen |
Ca | Calcium | Og | Oganesson |
Cd | Cadmium | Os | Osmium |
Ce | Cerium | P | Phosphorus |
Cf | Californium | Pa | Protactinium |
Cl | Chlorine | Pb | Lead |
Cm | Curium | Pd | Palladium |
Cn | Copernicium | Pm | Promethium |
Co | Cobalt | Po | Polonium |
Cr | Chromium | Pr | Praseodymium |
Cs | Cesium | Pt | Platinum |
Cu | Copper | Pu | Plutonium |
Ds | Darmstadtium | Ra | Radium |
Db | Dubnium | Rb | Rubidium |
Dy | Dysprosium | Re | Rhenium |
Er | Erbium | Rf | Rutherfordium |
Es | Einsteinium | Rg | Roentgenium |
Eu | Europium | Rh | Rhodium |
F | Fluorine | Rn | Radon |
Fe | Iron | Ru | Ruthenium |
Fm | Fermium | S | Sulfur |
Fr | Francium | Sb | Antimony |
Fl | Flerovium | Sc | Scandium |
Fy | Feynmanium | Se | Selenium |
Ga | Gallium | Sg | Seaborgium |
Gd | Gadolinium | Si | Silicon |
Ge | Germanium | Sm | Samarium |
H | Hydrogen | Sn | Tin |
He | Helium | Sr | Strontium |
Hf | Hafnium | Ta | Tantalum |
Hg | Mercury | Tb | Terbium |
Ho | Holmium | Tc | Technetium |
Hs | Hassium | Te | Tellurium |
I | Iodine | Th | Thorium |
In | Indium | Ti | Titanium |
Ir | Iridium | Tl | Thallium |
K | Potassium | Tm | Thulium |
Kr | Krypton | Ts | Tennessine |
La | Lanthanum | U | Uranium |
Li | Lithium | V | Vanadium |
Lr | Lawrencium | W | Tungsten |
Lu | Lutetium | Xe | Xenon |
Lv | Livermorium | Y | Yttrium |
| | Yb | Ytterbium |
| | Zn | Zinc |