The Physics
Hypertextbook
Opus in profectus

Frequently Used Equations

search icon

Reference

Mechanics

velocity
v = s
t
v = ds
dt
acceleration
a = v
t
a = dv
dt
equations of motion
v = v0 + at
s = s0 + v0t + ½at2
v2 = v02 + 2a(s − s0)
v = ½(v + v0)
newton's 2nd law
F = ma
F = dp
dt
weight
W = mg
dry friction
fs ≤ μsN
fk = μkN
centripetal accel.
ac = v2
r
ac = − ω2r
momentum
p = mv
impulse
J = Ft
J = 
F dt
impulse-momentum
Ft = mv

F dt = ∆p
work
W = Fs cos θ
W = 
F · ds
work-energy
Fs cos θ = ∆E

F · ds = ∆E
kinetic energy
K = ½mv2
K = p2
2m
general p.e.
U = − 
F · ds
F = − ∇U
gravitational p.e.
Ug = mgh
efficiency
η = Wout
Ein
power
P = W
t
P = dW
dt
power-velocity
P = Fv cos θ
P = F · v
angular velocity
ω = θ
t
ω = dθ
dt
v = ω × r
angular acceleration
α = ω
t
α = dω
dt
a = α × r − ω2 r
equations of rotation
ω = ω0 + αt
θ = θ0 + ω0t + ½αt2
ω2 = ω02 + 2α(θ − θ0)
ω = ½(ω + ω0)
torque
τ = rF sin θ
τ = r × F
2nd law for rotation
τ = Iα
τ = dL
dt
moment of inertia
I = ∑mr2
I = 
r2 dm
rotational work
W = τ∆θ
W = 
 τ · dθ
rotational power
P = τω cos θ
P = τ · ω
rotational k.e.
K = ½Iω2
angular momentum
L = mrv sin θ
L = r × p
L = Iω
angular impulse
H = τt
H = 
τ dt
angular i.m.
τt = mω

τ dt = ∆L
universal gravitation
Fg = − Gm1m2 
r2
gravitational field
g = − Gm 
r2
gravitational p.e.
Ug = − Gm1m2
r
gravitational potential
Vg = − Gm
r
orbital speed
v = √Gm
r
escape speed
v = √2Gm
r
hooke's law
F = − kx
spring p.e.
Us = ½kx2
s.h.o.
T = 2π√m
k
simple pendulum
T = 2π√
g
frequency
f = 1
T
angular frequency
ω = 2πf
density
ρ = m
V
pressure
P = F
A
pressure in a fluid
P = P0 + ρgh
buoyancy
B = ρgVdisplaced
mass flow rate
qm = m
t
qm = dm
dt
volume flow rate
qV = V
t
qV = dV
dt
mass continuity
ρ1A1v1 = ρ2A2v2
volume continuity
A1v1 = A2v2
bernoulli's equation
P1 + ρgy1 + ½ρv12 = P2 + ρgy2 + ½ρv22
dynamic viscosity
F = η vx
Ay
F = η dvx
Ady
kinematic viscosity
ν = η
ρ
drag
R = ½ρCAv2
mach number
Ma = v
c
reynolds number
Re = ρvD
η
froude number
Fr = v
g
young's modulus
F = E ∆ℓ
A0
σ = Eε
shear modulus
F = G x
Ay
τ = Gγ
bulk modulus
F = K V
AV0
P = Κθ
surface tension
γ = F

Thermal Physics

solid expansion
∆ℓ = αℓ0T
A = 2αA0T
V = 3αV0T
liquid expansion
V = βV0T
sensible heat
Q = mcT
latent heat
Q = mL
ideal gas law
PV = nRT
molecular constants
nR =Nk
maxwell-boltzmann
p(v) = 4v2

m

32e
− mv2
2kT
√π2kT
molecular k.e.
K⟩ = 32kT
molecular speeds
vp = √2kT
m
v⟩ = √8kT
πm
vrms = √3kT
m
heat flow rate
P = Q
t
P = dQ
dt
thermal conduction
P = kAT
stefan-boltzmann law
P = εσA(T4 − T04)
wien's law
λmax = b
T
fmax = bT
internal energy
U = 32nRT
U = 32NkT
thermodynamic work
W = −
P dV
1st law of thermo.
U = Q + W
entropy
S = Q
T
S = k log w
efficiency
ηreal = 1 − QC
QH
ηideal = 1 − TC
TH
c.o.p.
COPreal = QC
QH − QC
COPideal = TC
TH − TC

Waves & Optics

periodic waves
v = fλ
f(x,t) = A sin(2π(x/λ − ft) + φ)
frequency
f = 1
T
beat frequency
fbeat = fhigh − flow
intensity
I = P
A
intensity level
LI = 10 log

I

I0
pressure level
LP = 20 log

P

P0
doppler effect
fo = λs = c ± vo
fsλoc ∓ vs
f ≈ ∆λ ≈ v
fλc
mach angle
sin μ = c
v
cerenkov angle
cos θ = c
nvp
interference fringes
nλ = d sin θ
nλ ≈ x
dL
index of refraction
n = c
v
snell's law
n1 sin θ1 = n2 sin θ2
critical angle
sin θc = n2
n1
image location
1 = 1 + 1
fdodi
image size
M = hi = di
hodo
spherical mirrors
f ≈ r
2

Electricity & Magnetism

coulomb's law
F = k q1q2
r2
F = 1 q1q2 
4πε0r2
electric field, def.
E = FE
q
electric potential, def.
V = UE
q
field & potential
E = V
d
E = −∇V

E · dr = ∆V
electric field
E = k ∑q 
r2
E = k 
dq 
r2
electric potential
V = k ∑q
r
V = k 
dq
r
capacitance
C = Q
V
plate capacitor
C = κε0A
d
cylindrical capacitor
C = 2πκε0
ln(r2/r1)
spherical capacitor
C = 4πκε0
(1/r1) − (1/r2)
capacitive p.e.
Uc = ½QV = ½CV2 = ½ Q2
C
electric current
I = q
t
I = dq
dt
charge density
ρ = Q
V
current density
J = I
A
J = ρ v
ohm's law
V = IR
E = ρ J
J = σ E
resitivity-conductivity
σ = 1
ρ
electric resistance
R = ρℓ
A
electric power
P = VI = I2R = V2
R
resistors in series
Rs = ∑Ri
resistors in parallel
1 = ∑1
RpRi
capacitors in series
1 = ∑1
CsCi
capacitors in parallel
Cp = ∑Ci
magnetic force, charge 
FB = qvB sin θ
FB = qv × B
magnetic force, current
FB = IℓB sin θ
dFB = I d × B
biot-savart law
B = μ0I

ds × 
r2
solenoid
B = μ0nI
straight wire
B = μ0I
r
parallel wires
FB = μ0 I1I2
r
electric flux
ΦE = EA cos θ
ΦE = 
E · dA
magnetic flux
ΦB = BA cos θ
ΦB = 
B · dA
motional emf
ℰ = Bℓv
induced emf
 = − ∆ΦB
t
ℰ = − dΦB
dt
inductance
ℰ = − L dI
dt
capacitive reactance
XC = 1
fC
inductive reactance
XL = 2πfL
impedance
Z = ±√[R2 + (XL − XC)2]
Z = R + j(XL − XC)
gauss's law
E · dA = Q
ε0
∇ · E = ρ
ε0
no one's law
B · dA = 0
∇ · B =0
faraday's law
E · ds = − ∂ΦB
t
∇ × E = − B
t
ampere's law
B · ds = μ0ε0 ∂ΦE + μ0I
t
∇ × B = μ0ε0 E + μ0 J
t
electromagnetic plane wave
E(x,t) = E0 sin [2π(ft − x + φ)] 
λ
B(x,t) = B0 sin [2π(ft − x + φ)] 
λ
em energy density
η = ε0E2
η = 1 B2
μ0
poynting vector
S = 1 E × B
μ0
em pressure
P = ½η

Modern Physics

lorentz factor
γ = 1
√(1 − v2/c2)
time dilation
t = t0
√(1 − v2/c2)
t = γt0
length contraction
ℓ = ℓ0√(1 − v2/c2)
ℓ = 0
γ
relative velocity
u′ = u + v
1 + uv/c2
relativistic energy
E = mc2
√(1 − v2/c2)
E = γmc2
relativistic momentum
p = mv
√(1 − v2/c2)
p = γmv
energy-momentum
E2 = p2c2 + m2c4
mass-energy
E = mc2
relativistic k.e.
K = 

1 − 1

mc2
√(1 − v2/c2)
K = (γ − 1)mc2
relativistic doppler eff.
λ = f0 = √

1 + v/c

λ0f1 − v/c
photon energy
E = hf
E = pc
photon momentum
p = h
λ
p = E
c
photoelectric effect
Kmax = E − φ
Kmax = h(f − f0)
schroedinger's equation
iℏ  Ψ(r,t) = − 2 ∇2Ψ(r,t) + U(r)Ψ(r,t)
∂t2m
Eψ(r) = − 2 ∇2ψ(r) + U(r)ψ(r)
2m
uncertainty principle
pxx ≥ ℏ 
2
Et ≥ ℏ 
2
rydberg equation
1 = −R 

1 − 1

λn2n02
activity
A = n
t
half life
N = N02t/T½
absorbed dose
D = E
m
equivalent dose
H = wRD
effective dose
E = wTH