The Physics
Hypertextbook
Opus in profectus

Nucleosynthesis

search icon

Discussion

big bang nucleosynthesis

By the first millisecond, the universe had cooled to a few trillion kelvins (1012 K) and quarks finally had the opportunity to bind together into free protons and neutrons. Free neutrons are unstable with a half-life of about ten minutes (614.8 s) and formed in much smaller numbers. The abundance ratio was about seven protons for every neutron. Before one neutron half-life passed nearly every neutron had paired up with a proton, and nearly every one of these pairs had paired up to form helium. By this time the universe had cooled to a few billion kelvins (109 K) and the rate of nucleosynthesis had slowed down significantly. By the time the universe was three minutes old the process had basically stopped and the relative abundances of the elements was fixed at ratios that didn't change for very long time: 75% hydrogen, 25% helium, with trace amounts of deuterium (hydrogen-2), helium-3, and lithium-7. Big Bang nucleosynthesis produced no elements heavier than lithium. To do that you need stars, which means waiting around for at least 200 billion years.

we are all made of stars

More than ninety per cent of the universe is composed of hydrogen and helium. Both elements have been around since shortly after the beginning of the universe. Yet, hydrogen and helium together won't make anything as complex and as interesting as the Earth, or a bacterium, or a refrigerator, or you and I. To do that we need carbon and oxygen and nitrogen and silicon and chlorine and every other naturally occurring element. Almost all the hydrogen and helium present in the universe today (and some of the lithium) were created in the first three minutes after the big bang. All of the other naturally occurring elements were created in stars.

Stars like the sun

Details were discussed in the section on Fusion. The basic parts of the reaction are…

2[11H + 11H  →  21H + 0+1e (0.4 MeV) + 00ν (1.0 MeV)]
2[11H + 21H  →  32He + 00γ (5.5 MeV)]
32He + 32He  →  42He + 211H (12.9 MeV)

Which overall yields…

411H → 42He + 2[0+1e + 00γ + 00ν] (26.7 MeV)

Stars heavier than the sun use 12C as a catalyst.

You need really massive stars for this — say 20 to 120 times the mass of the sun.

Really, really heavy stars do something different.

The Mass-5 and Mass-8 Bottlenecks. There are no stable isotopes (of any element) having atomic masses 5 or 8. But there is always a very small amount of 8Be at any moment that is available to fuse with a third helium to produce 12C. This extremely improbable sequence is called the triple-alpha process because the net effect is to combine 3 alpha particles to form a 12C nucleus. The triple-alpha process is not relevant in main sequence (normal) stars like the sun because their core temperatures are too low. However, in the red giant phase, after many stars have accumulated vast amounts of helium in their core, the central temperature can rise high enough (108 K) to initiate the triple-alpha process.

42He +  42 He (92 keV)  →  84Be*
42He +  84Be*  (67 keV)  →  126C*
    126C*  →  126C + 00γ (7.4 MeV)

Overall

3[42He] → 126C + 00γ (7.4 MeV)

In order of increasing alpha number, the following forms of fusion take place…

alpha
number
mass
number
element(s) comments
1 4 He helium formed in all stars
2 8     no stable isotopes with this mass number
3 12 C carbon triple alpha process
4 16 O oxygen  
5 20 Ne neon  
6 24 Mg magnesium  
7 28 Si silicon  
8 32 S sulfur most abundant isotope of sulfur
9
 
36
 
S
Ar
sulfur
argon
0.02% of all sulfur atoms
most abundant isotope of solar argon
10

 
40

 
Ar
K
Ca
argon
potassium
calcium
most abundant isotope of atmospheric argon
0.01% of all potassium atoms
most abundant isotope of calcium
11 44 Ca calcium 2.1% of all calcium atoms
12
 
48
 
Ca
T
calcium
titanium
0.19% of all calcium atoms
 
13 52 Cr chromium  
14 56 Fe iron nuclear "ash"
Stable isotopes built from helium nuclei (alpha particles)
lifetime remaining core temperature core reaction
10,000,000 years   1H  ⇒  4He
1,000,000 years 170,000,000 K 4He  ⇒  12C, 16O
1,000 years   12C  ⇒  20Ne, 24Mg
10 years 1,500,000,000 K 20Ne  ⇒  16O, 24Mg
1 year 2,000,000,000 K 16O  ⇒  28Si, 32S
1 day 3,000,000,000 K 28Si, 32S  ⇒  56Fe, 56Ni
1 s explosive fusion
neutron capture
 ⇒ 
 ⇒ 
light elements
heavy elements
Core nuclear reactions in massive stars

How to Cook Everything

Mix it all up and get everything from hydrogen to uranium (and maybe even up to californium).

Top 20 elements in the universe Source: WebElements
rank element per million kg per million atoms
1 H hydrogen 750,000 930,000
2 He helium 230,000 72,000
3 O oxygen 10,000 800
4 C carbon 5,000 500
5 Ne neon 1,300 80
6 Fe iron 1,100 20
7 N nitrogen 1,000 90
8 Si silicon 700 30
9 Mg magnesium 600 30
10 S sulfur 500 20
11 Ar argon 200 6
12 Ca calcium 70 2
13 Ni nickel 60 1
14 Al aluminum 50 2
15 Na sodium 20 1
16 Cr chromium 15 0.4
17 Mn manganese 8 0.2
18 P phosphorus 7 0.3
19 Co cobalt 3 0.06
20 K potassium 3 0.1
everything else 6 0.2

how like a god

Rutherford was the first to transform one element into another.

147N + 42He → 178O → 11H

technetium

promethium

transuranic, cisuranic, superheavy

First synthesis of artificial elements (some claims are disputed) Chicago: University of Chicago (Chicago, Illinois)
GSI: Society for Heavy Ion Research (Darmstadt, Germany)
JINR: Joint Institute for Nuclear Research (Dubna, Russia)
LBL: Lawrence Berkeley National Laboratory (Berkeley, California)
ORNL: Oak Ridge National Laboratory (Oak Ridge, Tennessee)
RIKEN: Kokuritsu Kenkyū Kaihatsu Hōjin Rikagaku Kenkyūsho (Wako, Japan)
Enewetak: Ivy Mike weapon test (Enewetak Atoll, Marshall Islands)
Palermo: University of Palermo (Palermo, Italy)
element year location process
43 Tc technetium 1937 Palermo 9642Mo + 21H → 9843Tc
61 Pm promethium 1945 ORNL 14660Nd + 10n → 14761Pm + 0−1e
93 Np neptunium 1940 LBL 23892U + 10n → 23993Np + 0−1e
94 Pu plutonium 1941 LBL 23892U + 21H → 23894Pu + 210n + 0−1e
95 Am americium 1944 Chicago 23994Pu + 210n → 24195Am + 0−1e + 200γ
96 Cm curium 1944 Chicago 23994Pu + 42He → 24296Cm + 10n
97 Bk berkelium 1949 LBL 24195Am + 42He → 24597Bk
98 Cf californium 1950 LBL 24296Cm + 42He → 24698Cf
99 Es einsteinium 1952 Enewetak found in radioactive fallout
100 Fm fermium 1952 Enewetak found in radioactive fallout
101 Md mendelevium 1955 LBL 25399Es + 42He → 254101Md + 10n
102 No nobelium 1965 JNR 24395Am + 157N → 254102No + 410n
103 Lw lawrencium 1961 LBL 250–25298Cf + 10–115B → 258–259103Lw + 3–510n
104 Rf rutherfordium 1964 JINR 24294Pu + 2210Ne → 260104Rf + 410n
105 Db dubnium 1970
1970
JINR
LBL
24395Am + 2210Ne → 260105Db + 410n
24998Cf + 157N → 260105Db + 410n
106 Sg seaborgium 1974 LBL 24998Cf + 188O → 263106Sg + 410n
107 Bh bohrium 1981 JINR 20483Bi + 5424Cr → 258107Bh
108 Hs hassium 1984 GSI 20882Pb + 5826Fe → 266108Hs
109 Mt meitnerium 1982 GSI 20983Bi + 5826Fe → 266109Mt + 10n
110 Ds darmstadtium 1994 GSI 20882Pb + 6228Ni → 269110Ds + 10n
111 Rg roentgenium 1994 GSI 20983Bi + 6428Ni → 272111Rg + 10n
112 Cp copernicium 1996 GSI 20882Pb + 7030Zn → 278112Cp
113 Nh nihonium 2004 RIKEN 20983Bi + 7030Zn → 278113Nh + 10n
114 Fl flerovium 1999 JINR 24494Pu + 4820Ca → 289114Fl + 310n
115 Mc moscovium 2003 JINR 24395Am + 4820Ca → 288115Mc + 310n
116 Lv livermorium 2000 JINR 24896Cm + 4820Ca → 292116Lv + 410n
117 Ts tennessine 2010 JINR 24997Bk + 4820Ca → 293117Ts + 410
118 Og oganesson 2002 JINR 24998Cf + 4820Ca → 294118Og + 310n
119 Uue ununennium not yet synthesized
120 Ubn unbinilium not yet synthesized
121 Ubu unbiunium not yet synthesized
122 Ubb unbibium not yet synthesized